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Abstract
We develop the quantum Boltzmann equation approach for the Kondo breakdown quantum
critical point, involved with two bands for conduction electrons and localized fermions.
Particularly, the role of vertex corrections in transport is addressed, crucial for non-Fermi liquid
transport with temperature linear dependence. Only one band of spinons may be considered for
scattering with gauge fluctuations, and their associated vertex corrections are introduced in the
usual way, where the divergence of self-energy corrections is cancelled by that of vertex
corrections, giving rise to a physically meaningful result in the gauge invariant expression for
conductivity. On the other hand, two bands should be taken into account for scattering with
hybridization excitations, giving rise to coupled quantum Boltzmann equations. We find that
vertex corrections associated with hybridization fluctuations turn out to be irrelevant due to the
heavy mass of spinons in the so called decoupling limit, consistent with the diagrammatic
approach showing non-Fermi liquid transport.

1. Introduction

Non-Fermi liquid transport phenomena near heavy fermion
quantum critical points (QCPs) are one of the central interests
in the field of strongly correlated electrons [1]. To reveal
the scattering mechanism between charge carriers and critical
fluctuations is the key to understanding the temperature linear
resistivity [2], one of the hallmarks for non-Fermi liquid
physics in quantum critical matter. Basically, the nature
of critical modes, more precisely, the dynamical exponent z
determining their dispersion relation ω ∼ qz and the scattering
vertex between charge carriers and such critical modes are
essential ingredients for the transport phenomena.

The standard model of quantum criticality in a metallic
system is a z = 2 critical theory, often referred to as the
Hertz–Moriya–Millis (HMM) theory [3]. Fortunately, many
heavy fermion compounds have been shown not to follow the
spin-density-wave (SDW) theoretical framework, where the
temperature linear resistivity [4], divergent Grüneisen ratio
with an exponent 2/3 [5], Fermi surface reconstruction at the

QCP [6, 7], and the presence of localized magnetic moments
at the transition towards magnetism [8] seem to support a more
exotic scenario. An interesting suggestion is that the heavy
fermion quantum transition is analogous to an orbital selective
Mott transition [9–12], where only the f-electrons experience
the metal–insulator transition, identified with a breakdown of
the Kondo effect. This Kondo breakdown scenario differs from
the HMM theory [3], in the respect that the whole heavy Fermi
surface is destabilized at the QCP in the former case while only
hot regions connected by SDW vectors become unstable in the
latter.

The nature of the Kondo breakdown QCP turns out
to be multi-scale [11, 12]. The dynamics of hybridization
fluctuations is described by the z = 3 critical theory due
to the Landau damping of electron-spinon polarization above
an intrinsic energy scale E∗, while by a z = 2 dilute Bose
gas model below E∗. The energy scale E∗ originates from
mismatch of the Fermi surfaces of conduction electrons and
spinons, shown to vary from O(100) to O(102) mK. Based on
the z = 3 quantum criticality, both the logarithmic divergent
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specific heat coefficient and a power-law diverging thermal
expansion coefficient was shown to fit successfully, giving rise
to the divergent Grüneisen ratio with an exponent 2/3 [13].

Recently, we showed that not only electrical resistivity
but also thermal resistivity shows quasi-linear temperature
dependence around the Kondo breakdown QCP due to
scattering with z = 3 critical hybridization fluctuations [14],
based on the Kubo formula where diagrammatic calculations
were performed in the 1/N expansion with the spin degeneracy
N . An important point is that vertex corrections for scattering
with hybridization fluctuations can be neglected, a unique
feature of the two band model, resulting from the heavy mass
of spinons [11, 12]. This allows us to replace the transport time
with the scattering time for such a process. Then, only the self-
energy correction will be involved for transport, causing the
non-Fermi liquid resistivity.

In this paper we clarify the issue related with vertex
corrections for the transport phenomena at the Kondo
breakdown QCP, based on quantum Boltzmann equations
where vertex corrections are introduced naturally. An
important feature is the emergence of coupled quantum
Boltzmann equations for the distribution function of each band.
In the heavy fermion phase described by condensation of
Kondo bosons, only the lowest heavy fermion band may be
taken into account, resulting in Fermi liquid transport owing
to the absence of scattering with gapless fluctuations. In the
fractionalized Fermi liquid phase of the Kondo breakdown
scenario [10], hybridization fluctuations are gapped, leaving
the two bands decoupled in the low energy limit and
allowing us to consider the two quantum Boltzmann equations
independently. On the other hand, at the Kondo breakdown
QCP critical hybridization fluctuations force the two quantum
Boltzmann equations to be coupled, requiring both distribution
functions to be taken into account on equal footing. In this
situation the quantum Boltzmann equation study has not been
performed yet, at least for the heavy fermion QCP, as far as we
know.

The present paper is organized as follows. In section 2 we
introduce an effective field theory for the Kondo breakdown
QCP. In section 3 we examine the electrical resistivity based on
the coupled quantum Boltzmann equations, where the quantum
Boltzmann equation study is reviewed for the U(1) gauge
theory of the one band model and its extension to the two band
model is derived. In section 4 we summarize our results.

2. An effective field theory for the Kondo breakdown
quantum critical point

We start from the Anderson lattice model in the large-U limit

L =
∑

i

c†
iσ (∂τ − μ)ciσ − t

∑

〈i j〉
(c†

iσ c jσ + h.c.)

+ V
∑

i

(d†
iσ ciσ + h.c.)

+
∑

i

d†
iσ (∂τ + εf)diσ + J

∑

〈i j〉
�Si · �Sj , (1)

where ciσ and diσ are conduction electrons with a chemical
potential μ and localized electrons with an energy level εf. The

last spin-exchange term is introduced for competition with the
hybridization term of V .

Resorting to the U(1) slave-boson representation diσ =
b†

i fiσ with the single occupancy constraint b†
i bi + f †

iσ fiσ =
SN to take strong correlations with S = 1/2, one can rewrite
equation (1) with

L =
∑

i

c†
iσ (∂τ − μ)ciσ − t

∑

〈i j〉
(c†

iσc jσ + h.c.)

+ V
∑

i

(bi f †
iσ ciσ + h.c.)+

∑

i

b†
i ∂τbi

+
∑

i

f †
iσ (∂τ + εf) fiσ + J

N

∑

〈i j〉
( f †

iσχi j f jσ + h.c.)

+ i
∑

i

λi (b
†
i bi + f †

iσ fiσ − 1)+ J

N

∑

〈i j〉
|χi j |2, (2)

where bi and fiσ are holons and spinons, associated with
hybridization and spin fluctuations, respectively. The spin-
exchange term for the localized orbital is decomposed via the
exchange hopping processes of spinons, where χi j is a hopping
parameter for the decomposition. λi is a Lagrange multiplier
field to impose the constraint, and N is the number of fermion
flavours with σ = 1, . . . , N .

Performing the saddle-point approximation of bi → b,
χi j → χ , and iλi → λ, one finds an orbital selective Mott
transition as the breakdown of the Kondo effect at J ≈ TK,
where a spin liquid Mott insulator (〈bi 〉 = 0) results in J > TK

while a heavy fermion Fermi liquid (〈bi 〉 	= 0) results in TK >

J [10–12]. Here, TK = D exp( εf
Nρc V 2 ) is the single impurity

Kondo temperature, where ρc ≈ (2D)−1 is the density of states
for conduction electrons with the half bandwidth D.

Quantum fluctuations should be incorporated for the
critical physics at the Kondo breakdown QCP, where two
kinds of bosonic collective modes will scatter two kinds of
fermions, that is, conduction electrons and spinons. Gauge
fluctuations corresponding to phase fluctuations of the hopping
parameter χi j = χeiai j are introduced to express collective
spin fluctuations [15]. Hybridization fluctuations are critical,
playing an important role for the Kondo breakdown QCP. Such
four field variables lead us to the following effective field
theory in the continuum approximation,

LAL M = c∗
σ (∂τ − μc)cσ + 1

2mc
|∂i cσ |2

+ f ∗
σ (∂τ − μf − iaτ ) fσ + 1

2mf
|(∂i − iai) fσ |2

+ b∗(∂τ − μb − iaτ )b + 1

2mb
|(∂i − iai)b|2 + ub

2
|b|4

+ V (b∗c∗
σ fσ + h.c.)

+ 1

4g2
fμν fμν + SN(μb + iaτ ), (3)

where g is an effective coupling constant between matter and
gauge fields, and several quantities, such as fermion band
masses and chemical potentials, are redefined as follows

λ → −μb, (2mc)
−1 = t, (2mf)

−1 = Jχ,

μc = μ+ 2 dt, −μf = εf + λ− 2J dχ.

2
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Fermion bare bands εc
k and εf

k for conduction electrons
and spinons, respectively, are treated in the continuum
approximation as εc

k ≈ −2 dt + t (k2
x + k2

y + k2
z ) and

εf
k ≈ −2J dχ + Jχ(k2

x + k2
y + k2

z ). The band dispersion
for hybridization can arise from high energy fluctuations of
conduction electrons and spinons. Actually, the band mass
of holons is given by m−1

b ≈ NV 2ρc/2, where ρc is the
density of states for conduction electrons [11, 12]. Local self-
interactions denoted by ub can be introduced via non-universal
short-distance-scale physics. Maxwell dynamics for gauge
fluctuations appears from high energy fluctuations of spinons
and holons.

Based on the effective Lagrangian, recent studies [11, 12]
developed an Eliashberg theory for the Kondo breakdown QCP,
where the momentum dependence in fermion self-energies
and vertex corrections are neglected, allowing us to evaluate
one loop-level quantum corrections fully self-consistently.
Actually, this approximation was shown to be ‘exact’ in the
large N limit [16]. The Eliashberg theory for hybridization
fluctuations results in the z = 3 Kondo breakdown QCP,
discussed in the introduction.

3. Quantum Boltzmann equation study

We examine electrical transport at the Kondo breakdown QCP
based on quantum Boltzmann equations, where we assume that
both hybridization and gauge fluctuations are in equilibrium
and consider only fermion contributions, consistent with the
one loop result for the transport coefficient [14]. Since we have
two kinds of fermion excitations, we find coupled quantum
Boltzmann equations for distributions of conduction electrons
and spinons. Solving such coupled quantum Boltzmann
equations, we find that the diagrammatic result is recovered
in the so called ‘decoupling’ limit of these equations, where
vertex corrections for scattering with hybridization fluctuations
can be ignored, but those for scattering with gauge fluctuations
should be introduced in the spinon conductivity.

Before we perform the quantum Boltzmann equation
study for the Kondo breakdown QCP with two bands, we
review this approach in the U(1) gauge theory with one
band in order to understand the role of vertex corrections in
the transport coefficient [17, 18] and demonstrate that our
treatment successfully recovers the known result [19, 20].

3.1. Application to U(1) gauge theory for a spin liquid state

We apply the quantum Boltzmann equation to the transport
problem of U(1) gauge theory,

Seff =
∫

dτ
∫

ddr

{
ψ†
σ (∂τ − iaτ − μψ)ψσ

+ 1

2mψ

|(∂i − iai)ψσ |2
}

+
∫

dν

2π

∑

q

D(q, ν)

(
δi j − qi q j

q2

)

× ai(q, ν)a j(−q,−ν), (4)

where D(q, ν) = (−iγψ
ν
q + χψq2)−1 is the gauge propagator

with the diamagnetic susceptibility χψ and Landau damping
coefficient γψ .

One can obtain this effective field theory from the Hubbard
model in the frustrated lattice based on the U(1) slave-rotor
representation [21], where charge fluctuations are gapped at
half filling, but magnetic ordering is prohibited owing to the
geometrical frustration, corresponding to a spin liquid Mott
insulator. One also finds this effective field theory in the
so called algebraic charge liquid for the anomalous normal
state of high Tc cuprates, derived from the U(1) slave-fermion
representation, where spin fluctuations described by Schwinger
bosons are gapped, but charged excitations represented by
fermionic holons are gapless, allowing an anomalous metallic
state due to scattering with gauge fluctuations [22, 23].

Compared to the effective field theory (equation (3)) for
the Kondo breakdown QCP of the Anderson lattice model, this
U(1) gauge theory (equation (4)) is a simplified version since
it does not have both holons and conduction electrons. In this
section we focus on the mathematical structure, in particular,
the gauge invariant expression for conductivity [19, 20] instead
of the physical aspect, in order to prepare for the Boltzmann
equation study of the Anderson lattice model.

We start from the quantum Boltzmann equation [24]

[∂ω f (ω)]�(k, ω)[A(k, ω)]2vk · E = Icoll(k, ω), (5)

where �(k, ω) and A(k, ω) are the imaginary parts of
the retarded self-energy and retarded Green’s function,
respectively, f (ω) is the Fermi–Dirac distribution function in
equilibrium, vk is the velocity of fermions, and E is an external
electric field. Icoll(k, ω) is the collision term given by

Icoll(k, ω) = �>(k, ω)G<(k, ω)− �<(k, ω)G>(k, ω), (6)

where �<,>(k, ω) and G<,>(k, ω) are lesser and greater self-
energies and Green’s functions, respectively. Using the identity
of

�>(k, ω)G<(k, ω)−�<(k, ω)G>(k, ω)

= 2i�(k, ω)G<(k, ω)− i�<(k, ω)A(k, ω),

where the lesser self-energy is given by

�<(k, ω) =
∑

q

∫ ∞

0

dν

π

∣∣∣∣
k × q̂

mψ

∣∣∣∣
2

�D(q, ν)

× [{n(ν)+ 1}G<(k + q, ω + ν)

+ n(ν)G<(k + q, ω − ν)], (7)

with the Bose–Einstein distribution function n(ν) and the
spectral function �D(q, ν) for gauge fluctuations in the one
loop approximation, the lesser Green’s function is the only
unknown function, determined by the quantum Boltzmann
equation. In this problem it is defined as the Fourier
transformation for relative coordinates, given by

G<(r, t; R, T ) = i

〈
ψ†
σ

(
R − r

2
, T − t

2

)

× ψσ

(
R + r

2
, T + t

2

)〉

3
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with the centre of mass coordinates R, T and relative ones r, t ,
where dynamics of the ψσ field is governed by equation (4).
In the spatially homogeneous case and steady state, one can
neglect the R, T dependence for the distribution function. This
quantum Boltzmann equation is derived well in [24], based on
the Schwinger–Keldysh formulation.

In the linear response regime we can expand the lesser
Green’s function up to the first order in the electric field

G<(k, ω) = iA(k, ω)

[
f (ω)−

(
∂ f (ω)

∂ω

)
E ·vk�(k, ω)

]
, (8)

where �(k, ω) is the distribution function out of, but near
equilibrium due to the electric field. Inserting this ansatz into
the lesser self-energy, we obtain the following expression for
the lesser self-energy

�<(k, ω) = i
∑

q

∫ ∞

0

dν

π

∣∣∣
k × q̂

mψ

∣∣∣
2�D(q, ν) f (ω)

× {[n(ν)+ f (ω + ν)]A(k + q, ω + ν)

− [n(−ν)+ f (ω − ν)]A(k + q, ω − ν)}
+ i

∑

q

∫ ∞

0

dν

π

∣∣∣∣
k × q̂

mψ

∣∣∣∣
2

�D(q, ν)E · vk+q

(
−∂ f (ω)

∂ω

)

×
{
[n(ν)+ f (ω + ν)]1 − f (ω + ν)

1 − f (ω)
× A(k + q, ω + ν)�(k + q, ω + ν)

− [n(−ν)+ f (ω − ν)]1 − f (ω − ν)

1 − f (ω)

× A(k + q, ω − ν)�(k + q, ω − ν)

}
, (9)

where we used the identities for thermal factors of fermions
and bosons,

{n(ν)+ 1} f (ω + ν) = f (ω){n(ν)+ f (ω + ν)},
n(ν) f (ω − ν) = − f (ω){n(−ν)+ f (ω − ν)},

and

{n(ν)+ 1}
(

−∂ f (ω + ν)

∂ω

)
= {n(ν)+ f (ω + ν)}

× 1 − f (ω + ν)

1 − f (ω)

(
−∂ f (ω)

∂ω

)
,

n(ν)

(
−∂ f (ω − ν)

∂ω

)
= −{n(−ν)+ f (ω − ν)}

× 1 − f (ω − ν)

1 − f (ω)

(
−∂ f (ω)

∂ω

)
.

Inserting both the lesser Green’s function and self-energy
into the quantum Boltzmann equation, we find

�(kF, ω) ≈ 1

2
A(kF, ω)+ 1

2�(kF, ω)

×
∑

q

∫ ∞

0

dν

π

∣∣∣∣
kF × q̂

mψ

∣∣∣∣
2

�D(q, ν)

× {[n(ν)+ f (ω + ν)]A(kF + q, ω + ν)

− [n(−ν)+ f (ω − ν)]A(kF + q, ω − ν)}
×

(
vkF · vkF+q

v2
F

)
�(kF, ω), (10)

where the momentum is replaced with the Fermi momentum,
kF because usual transport phenomena occur near the Fermi
surface except some topological quantities such as Hall
conductivity [25] and frequency dependence in both the
‘vertex-distribution’ function �(kF, ω) and thermal Fermi
factor is simplified. In this expression the imaginary part of
the self-energy or scattering rate is defined as

2�(k, ω) =
∑

q

∫ ∞

0

dν

π

∣∣∣∣
k × q̂

mψ

∣∣∣∣
2

�D(q, ν)

× {[n(ν)+ f (ω + ν)]A(k + q, ω + ν)

− [n(−ν)+ f (ω − ν)]A(k + q, ω − ν)}. (11)

This approximation will be justified by the fact that it gives rise
to the known result in the gauge theory context.

Introducing the relative angle θ between the initial kF and
final kF + q momenta, we obtain

�(kF, ω) = 2�(kF, ω)

2�1−cos(kF, ω)
A(kF, ω), (12)

where

2�1−cos(kF, ω) = 3

2�3

∫ �

0
dq q2

∫ 1

−1
d cos θ [v2

F cos2(θ/2)]

×
∫ ∞

0

dν

π
�D(q, ν)[1 − cos θ ]

× {[n(ν)+ f (ω + ν)]A(kF + q, ω + ν)

− [n(−ν)+ f (ω − ν)]A(kF + q, ω − ν)}. (13)

In this expression
∑

q is replaced with 3
2�3

∫ �
0 dq q2

∫ 1
−1 d cos θ

in d = 3, where� is a momentum cutoff. The 1 − cos θ factor
in �1−cos(kF, ω) identifies [2�1−cos(kF, ω)]−1 with the trans-
port time τtr(ω), dominantly capturing large angle scattering.

The electrical (charge) or number conductivity is
expressed by the lesser Green’s function,

Jψμ = −i
∫

d3k

(2π)3
kμ
mψ

∫
dω

2π
G<(k, ω). (14)

Inserting the near-equilibrium ansatz for the lesser Green’s
function into this expression, we obtain the electrical
conductivity

σμν(T ) =
∫

d3k

(2π)3

∫
dω

2π
vkμvkν

(
−∂ f (ω)

∂ω

)
A(k, ω)�(k, ω)

(15)
where the equilibrium contribution does not generate currents
and thus vanishes.

Inserting the vertex-distribution function into the conduc-
tivity expression and performing the momentum and energy
integration, we reach the final form of the conductivity

σ(T ) ≈ CNFv
2
Fτtr(T ) (16)

with C = N
π

∫ ∞
−∞ dy 1

(y2+1)2 , where NF is the density of
states at the Fermi surface and the transport time is τtr(T ) =
[2�1−cos(T )]−1, as emphasized before.

The transport time turns out to be τtr(T ) ∝ T −5/3, giving
rise to σ(T ) ∝ T −5/3 in d = 3, completely consistent
with the previous study [19, 20]. An important point is that

4
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although the self-energy correction due to gauge fluctuations is
diverging at finite temperatures, the gauge invariant expression
for the conductivity allows only the finite result, cancelling
the divergence via the vertex correction [18]. 1 − cos θ
guarantees such a cancellation. This is the power of the
quantum Boltzmann equation, imposing the vertex correction
naturally.

In this derivation gauge fluctuations are assumed to be
in equilibrium. Generally speaking, their non-equilibrium
distribution due to external fields should be introduced.
Actually, phonon drag effects are well known in the electron–
phonon system [24]. Recently, this issue was considered in
the spin liquid context with z = 3 gauge fluctuations [20],
where coupled quantum Boltzmann equations for spinon and
photon distribution functions are derived. It was argued that
such coupled transport equations can be decoupled in some
cases, where such drag effects are subdominant, compared with
fermion contributions.

The present formulation differs from the previous
approach in the fact that we did not decompose the gauge
field as in the study of [19, 20], where the low energy gauge
field giving rise to divergence is neglected and only high
energy gauge fluctuations are taken. Although the vertex-
distribution function itself is not well defined, because the
part corresponding to the scattering rate is divergent at finite
temperatures, we found that such a decomposition is not
necessary because the formal divergence should be cancelled
in the last gauge invariant physical expression. This spirit goes
exactly through that of the diagrammatic study.

3.2. Application to the Kondo breakdown QCP of the
Anderson lattice model

In the Kondo breakdown scenario we have four kinds
of field variables, corresponding to conduction electrons,
spinons, holons (hybridization fluctuations), and gauge bosons
(collective spin fluctuations). Our main assumption for the
transport study based on the quantum Boltzmann equation
approach is that both hybridization and gauge fluctuations are
in equilibrium, as pointed out earlier. This assumption is
justified by the diagrammatic study [14], where contributions
from boson excitations are much smaller than fermion
contributions, and by the Boltzmann equation study of the
U(1) gauge theory discussed in the previous section. As a
result, we are allowed to have two coupled quantum Boltzmann
equations,

[Ac(k, ω)]2∂ω f (ω)E · vc
k�c(k, ω) = I c

coll(k, ω),

I c
coll(k, ω) = 2i�c(k, ω)G

<
c (k, ω)− i�<

c (k, ω)Ac(k, ω)
(17)

for conduction electrons and

[Af(k, ω)]2∂ω f (ω)E · vf
k�f(k, ω) = I f

coll(k, ω),

I f
coll(k, ω) = 2i�f(k, ω)G

<
f (k, ω)− i�<

f (k, ω)Af(k, ω)
(18)

for spinons. The lesser Green’s function for conduction
electrons is given by

G<
c (r, t; R, T ) = i

〈
c†
σ

(
R − r

2
, T − t

2

)
cσ

(
R + r

2
, T + t

2

)〉
,

and that for spinons is defined as

G<
f (r, t; R, T ) = i

〈
f †
σ

(
R − r

2
, T − t

2

)
fσ

(
R + r

2
, T + t

2

)〉
,

where the dynamics of cσ and fσ fields are governed by
the Kondo breakdown model, equation (3). The spatially
homogeneous case and steady state are taken into account,
allowing these distribution functions to be independent of the
centre of mass coordinates R, T .

3.2.1. Contribution of conduction electrons. The lesser self-
energy for conduction electrons arises from scattering with
hybridization fluctuations, given by

�<
c (k, ω) = V 2

∑

q

∫ ∞

0

dν

π
�Db(q, ν)[{n(ν)+ 1}

× G<
f (k + q, ω + ν)+ n(ν)G<

f (k + q, ω − ν)] (19)

in the Eliashberg framework. Since the spinon Green’s
function appears in the electron self-energy, the two quantum
Boltzmann equations are coupled with each other. This
coupling effect is the main character for the quantum
Boltzmann equation of the Anderson lattice model at the QCP.

Inserting the lesser Green’s function of spinons

G<
f (k, ω) = iAf(k, ω)

[
f (ω)−

(
∂ f (ω)

∂ω

)
E · vf

k�f(k, ω)

]

(20)
into the electron lesser self-energy and the lesser Green’s
function for conduction electrons

G<
c (k, ω) = iAc(k, ω)

[
f (ω)−

(
∂ f (ω)

∂ω

)
E · vc

k�c(k, ω)

]

(21)
into the quantum Boltzmann equation for conduction electrons,
we obtain

�c(k
c
F, ω) ≈ 1

2
Ac(k

c
F, ω)+ V 2

2�c(kc
F, ω)

×
∑

q

∫ ∞

0

dν

π
�Db(q, ν)

(vf
k+q · vc

k

vc2
k

)

× {[n(ν)+ f (ω + ν)]Af(k
f
F + q, ω + ν)

− [n(−ν)+ f (ω − ν)]Af(k
f
F + q, ω − ν)}�f(k

f
F, ω),

(22)

where

2�c(k, ω) = V 2
∑

q

∫ ∞

0

dν

π
�Db(q, ν){[n(ν)+ f (ω + ν)]

× Af(k + q, ω + ν)− [n(−ν)
+ f (ω − ν)]Af(k + q, ω − ν)} (23)

is the scattering rate of conduction electrons and the same
approximations as the case of the U(1) gauge theory are
utilized. It is important to notice that the vertex-distribution
function for conduction electrons is related with that for
spinons. We should know the vertex-distribution function for
spinons.

5
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3.2.2. Contribution of spinons. The lesser self-energy
for spinon excitations results from scattering with both
hybridization and gauge fluctuations, given by

�<
f (k, ω) = �b<

f (k, ω)+ �a<
f (k, ω),

�b<
f (k, ω) = V 2

∑

q

∫ ∞

0

dν

π
�Db(q, ν)[{n(ν)+ 1}

× G<
c (k + q, ω + ν)+ n(ν)G<

c (k + q, ω − ν)],

�a<
f (k, ω) =

∑

q

∫ ∞

0

dν

π

∣∣∣∣
k × q̂

mf

∣∣∣∣
2

�Da(q, ν)[{n(ν)+ 1}

× G<
f (k + q, ω + ν)+ n(ν)G<

f (k + q, ω − ν)], (24)

where the lesser Green’s function of conduction electrons
appear in the hybridization-vertex-induced spinon self-energy
while that of spinons arises in the self-energy correction via
gauge fluctuations.

Inserting the lesser Green’s functions for both conduction
electrons and spinons into the lesser self-energy and quantum
Boltzmann equation for spinons, we find

vf
F�f(k

f
F, ω) ≈ vf

F

2
Af(k

f
F, ω)

+ V 2

2�f(kf
F, ω)

∑

q

∫ ∞

0

dν

π
�Db(q, ν)vc

kF+q

× {[n(ν)+ f (ω + ν)]Ac(k
c
F + q, ω + ν)

− [n(−ν)+ f (ω − ν)]Ac(k
c
F + q, ω − ν)}�c(k

c
F, ω)

+ 1

2�f(kf
F, ω)

∑

q

∫ ∞

0

dν

π

∣∣∣∣
kf

F × q̂

mf

∣∣∣∣
2

�Da(q, ν)vf
kF+q

× {[n(ν)+ f (ω + ν)]Af(k
f
F + q, ω + ν)

− [n(−ν)+ f (ω − ν)]Af(k
f
F + q, ω − ν)}�f(k

f
F, ω),

(25)

where

2�f(k, ω) = V 2
∑

q

∫ ∞

0

dν

π
�Db(q, ν)

× {[n(ν)+ f (ω + ν)]Ac(k + q, ω + ν)

− [n(−ν)+ f (ω − ν)]Ac(k + q, ω − ν)}
+

∑

q

∫ ∞

0

dν

π

∣∣∣∣
k × q̂

mf

∣∣∣∣
2

�Da(q, ν){[n(ν)

+ f (ω + ν)]Af(k + q, ω + ν)

− [n(−ν)+ f (ω − ν)]Af(k + q, ω − ν)}
≡ 2�b

f (k, ω)+ 2�a
f (k, ω) (26)

is the scattering rate of spinons resulting from scattering with
both hybridization �b

f (k, ω) and gauge fluctuations �a
f (k, ω).

One can check equations (25) and (26), considering that the
hybridization-induced part is basically the same as that of the
quantum Boltzmann equation for conduction electrons and the
gauge-fluctuation part coincides with that shown in the U(1)
gauge theory of section 3.2.1.

Inserting the vertex-distribution function (equation (22))
for conduction electrons into the vertex-distribution function
(equation (25)) for spinons, we find the following expression

for spinons

�f(k
f
F, ω) = 1

2

{
Af(k

f
F, ω)+ �b

f,cos(k
f
F, ω)

�f(kf
F, ω)

Ac(k
c
F, ω)

}

+
{
�b

f,cos(k
f
F, ω)

�f(kf
F, ω)

�c,cos(kf
F, ω)

�c(kc
F, ω)

+ �a
f,cos(k

f
F, ω)

�f(kf
F, ω)

}
�f(k

f
F, ω) (27)

with

2�b
f,cos(k

f
F, ω) ≡ V 2 3

2�3

∫ �

0
dq q2

×
∫ 1

−1
d cos θcf

(
vc

F

vf
F

cos θcf

)

×
∫ ∞

0

dν

π
�Db(q, ν){[n(ν)

+ f (ω + ν)]Ac(k
c
F + q, ω + ν)

− [n(−ν)+ f (ω − ν)]Ac(k
c
F + q, ω − ν)},

2�a
f,cos(k

f
F, ω) ≡ 3

2�3

∫ �

0
dq q2

∫ 1

−1
d cos θff cos θff

×
∫ ∞

0

dν

π
[v f 2

F cos2(θff/2)]�Da(q, ν)

× {[n(ν)+ f (ω + ν)]Af(k
f
F + q, ω + ν)

− [n(−ν)+ f (ω − ν)]Af(k
f
F + q, ω − ν)},

2�c,cos(k
f
F, ω) ≡ V 2 3

2�3

∫ �

0
dq q2

×
∫ 1

−1
d cos θcf

(
vf

F

vc
F

cos θcf

)

×
∫ ∞

0

dν

π
�Db(q, ν){[n(ν)+ f (ω + ν)]

× Af(k
f
F + q, ω + ν)

− [n(−ν)+ f (ω − ν)]Af(k
f
F + q, ω − ν)}, (28)

where θcf represents an angle between the initial electron
velocity vc

F and final spinon velocity vf
F, and θff is defined in

a similar way, but between spinons.
We obtain the spinon vertex-distribution function

�f(k
f
F, ω) = 1

2 {�f(k
f
F, ω)Af(k

f
F, ω)

+ �b
f,cos(k

f
F, ω)Ac(k

c
F, ω)}

{
�b

f (k
f
F, ω)+ �a

f,1−cos(k
f
F, ω)

− �b
f,cos(k

f
F, ω)

�c,cos(kf
F, ω)

�c(kc
F, ω)

}−1

, (29)

where

2�a
f,1−cos(k

f
F, ω) ≡ 3

2�3

∫ �

0
dq q2

∫ 1

−1
d cos θff[1 − cos θff]

×
∫ ∞

0

dν

π
[v f 2

F cos2(θff/2)]�Da(q, ν){[n(ν)
+ f (ω + ν)]Af(k

f
F + q, ω + ν)

− [n(−ν)+ f (ω − ν)]Af(k
f
F + q, ω − ν)} (30)

is identified with [τ a
tr (ω)]−1 as shown in the U(1) gauge theory

of section 3.2.1.
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3.2.3. Conductivity in the decoupling limit. In the vertex-
distribution function for spinons (equation (25)) we neglect
the coupling term�c(kc

F, ω) as the zeroth order approximation
for the transport study, named as the decoupling limit. One
may understand the validity of this approximation, based on
the fact that spinons are heavily massive, denoted by α � 1,
and scattering with conduction electrons will not affect their
dynamics much. Then, we find

�f(k
f
F, ω) = 1

2

�f(kf
F, ω)Af(kf

F, ω)

�b
f (k

f
F, ω)+ �a

f,1−cos(k
f
F, ω)

. (31)

Inserting this expression into the spinon conductivity, we
obtain

σf(T ) = CN f
Fv

f 2
F

2�b
f (T )+ 2�a

f,1−cos(T )
, (32)

exactly the same as that of the diagrammatic study [14],
where vertex corrections are introduced only for the scattering
channel with gauge fluctuations. As discussed in the previous
section, z = 3 gauge fluctuations give rise to divergence
for self-energy corrections to spinons, but cancelled by
vertex corrections, allowing the gauge invariant finite physical
conductivity proportional to ∼T −5/3 in d = 3. One may
ask why the same situation does not happen for scattering
with z = 3 hybridization fluctuations. Actually, such z = 3
dynamics of holons is cut by an intrinsic energy scale E∗, and
scattering with z = 2 hybridization fluctuations below E∗ does
not cause the divergence for self-energy corrections.

The vertex-distribution function for conduction electrons
becomes

�c(k
c
F, ω) ≈ 1

2
Ac(k

c
F, ω)+

1

2

�c,cos(kc
F, ω)

�c(kc
F, ω)

× �f(kf
F, ω)Af(kf

F, ω)

�b
f (k

f
F, ω)+ �a

f,1−cos(k
f
F, ω)

, (33)

where scattering with spinons is incorporated through
the vertex-distribution function for spinons because light
conduction electrons can be much more affected. However,
calling

�c,cos(kc
F, ω)

�c(kc
F, ω)

= O(vf
F/v

c
F) ≈ α � 1, (34)

the second contribution in the electron vertex-distribution can
be neglected. As a result, the conductivity from conduction
electrons is free from vertex corrections, becoming

σc(T ) = C Nc
Fv

c2
F

2�c(T )
, (35)

which coincides with that of the diagrammatic study [14]
showing �c(T ) ∼ T ln(T/E∗) in the z = 3 critical regime.

The last task is to find an actual expression for the physical
conductivity, referred as the Ioffe–Larkin composition rule [26]

σ(T ) = σc(T )+ σb(T )σf(T )

σb(T )+ σf(T )
≈ σc(T ), (36)

where σb(T ) is the holon conductivity, much smaller than
fermion contributions, justifying the last approximation.

One may ask the role of the spinon conductivity for
any physical response functions. Actually, it contributes to
the physical thermal conductivity given by the corresponding
Ioffe–Larkin composition rule

κ(T )

T
≈ κc(T )

T
+ κf(T )

T
, (37)

where κc,f(T ) are thermal conductivity of conduction electrons
and spinons, respectively, and holon contributions are also
neglected. Assuming that the Wiedemann–Franz law holds for
each fermion sector, proven to be correct at least in the one
loop approximation [14], we find

κt(T )

T
≈ π2

3
(σc(T )+ σf(T )), (38)

suggesting that the Wiedemann–Franz law should be violated
due to the presence of additional entropy carriers, that is,
spinons at the Kondo breakdown QCP in the low temperature
limit, i.e.,

L(T ) ≡ κ(T )

Tσ(T )
≈ L0

(
1 + ρfv

f
F

ρcv
c
F

)
(39)

with L0 = π2/3, the value of the Fermi liquid. This
result would be robust beyond our approximation because this
expression includes just the density of states and velocity at the
Fermi energy, thus expected to be governed by a conservation
law.

4. Summary

In this paper we developed the quantum Boltzmann equation
approach for the Kondo breakdown QCP, with which two
bands for conduction electrons and localized fermions are
involved, where scattering with z = 3 critical hybridization
fluctuations and z = 3 gapless gauge bosons relaxes their
dynamics. Our main problem was to understand the role of
vertex corrections in their transport phenomena, crucial for
the T -linear non-Fermi liquid resistivity in the z = 3 critical
theory.

Only one band of spinons is involved for scattering with
gauge fluctuations, and their associated vertex corrections
are introduced in the usual way, demonstrated in the U(1)
gauge theory of section 3.1. Our treatment for gauge
fluctuations is different from the previous study [19], in
the respect that the vertex-distribution function is not well
defined owing to the formal divergence associated with vertex
corrections, but cancelled in the physical conductivity through
self-energy corrections as it should be, consistent with the
diagrammatic approach [18], while in the well defined previous
study divergent contributions are thrown away in the vertex-
distribution function. Of course, both approaches give the same
result.

On the other hand, two bands should be taken into account
for scattering with hybridization excitations, giving rise to
coupled quantum Boltzmann equations. In the so called
decoupling limit, where coupling effects are neglected for the
Boltzmann equation of spinons while they are allowed for that
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of conduction electrons, the vertex correction for conduction
electrons associated with hybridization fluctuations turns out to
be irrelevant due to the heavy mass of spinons, denoted by α �
1. Results of the diagrammatic approach are recovered from
the quantum Boltzmann equation approach in the decoupling
limit.

The next task is what happens beyond the decoupling
limit. Our preliminary analysis shows that vertex corrections
seem to appear in the scattering channel with hybridization
fluctuations. However, we have not found the corresponding
diagram for such a correction at present. It remains as an
interesting future study.
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